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1.7.1 Moments and Moment Generating Functions
Definition 1.12. Thenth moment# € N) of a random variableX is defined as
py = E X"
Thenth central moment ok is defined as
pn = E(X — )",
wherey = pf = E X. O

Note, that the second central moment is the variance of ammariableX’, usu-
ally denoted by?.

Moments give an indication of the shape of the distributiba candom variable.
Skewness and kurtosis are measured by the following fumetd the third and
fourth central moment respectively:

the coefficient of skewnesgs given by

E(X —p)?
= BX =07

3 3
7 13
the coefficient of kurtosis is given by
E(X — p)?
= ( 4#) _g_ta_y
g M3

Moments can be calculated from the definition or by using #e¢anoment gen-
erating function.

Definition 1.13. Themoment generating function (mgf) of a random variableX
is a functionMx : R — [0, c0) given by
MX (t) =E etX7

provided that the expectation exists fan some neighborhood of zero. O
More explicitly, the mgf ofX can be written as

M (t) :/ e fx(x)dz, if X iscontinuous

Mx(t) =) " P(X = z)dz, if X is discrete
reX
The method to generate moments is given in the followingrén@o
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Theorem 1.7.1f X has mgfMx(¢), then
B(X") = MY(0),

where o
MP(0) = —— M (t)]o.
V(0 = 2o M@)o
That is, then-th moment is equal to the-th derivative of the mgf evaluated at
t=0.

Proof. Assuming that we can differentiate under the integral sigmvay write

d d [* ..
EMX(t)_E/Ooe fx(x)dx

(47

_ /_ " (we™) fx (2)da

o0

= B(XeY).
Hence, evaluating the last expression at zero we obtain

d tX _
ZMx(t)lo = E(Xe™)]o = E(X).

Forn = 2 we will get

d2
ﬁMx(tﬂo = E(X?e™)|y = B(X?).

Analogously, it can be shown that for any= N we can write
d" n tX n
%Mx(t”o =E(X"e)|p = E(X™).
U

Examplel.14 Find the mgf ofX ~ Exp(\) and use results of Theorem 1.7 to
obtain the mean and variance %t

By definition the mgf can be written as

o0

Mx(t) = E(e'X) = / e fx(x)dw.

—00
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For the exponential distribution we have

fx(z) = /\e*)‘xl(opo) (),

wherel € R, . Here we used the notation of the indicator functiariz) whose
meaning is as follows:

1, If z € X,
Ix(z) = { 0, otherwise.

That is,
 xe if x € (0,00);
Ix() = { 0, otherwise.

Hence, integrating by the method of substitution, we get
. >~ try —A\x o >~ (t—=N)zx . A .
Mx (t) = e e Mdr =\ e dr = PR provided that/t| < A.
0 0 -

Now, using Theorem 1.7 we obtain the first and the second m@respectively:

A 1

E(X) = Mx(0) = m’tzo =

2\ 2

2 (2) _
E(X7) = Mx"(0) = W}tzo =\
Hence, the variance of is

var(X) = B(X?) — [B(X)]* = % — % = %

Exercisel.10 Calculate mgf for Binomial and Poisson distributions.

Moment generating functions provide methods for compadiggributions or
finding their limiting forms. The following two theorems @ws the tools.
Theorem 1.8.Let F'y (z) and Fy (y) be two cdfs whose all moments exist. Then

1. If Fx and Fy have bounded support, thehiy (u) = Fy(u) for all w iff
E(X™) =E(Y") foralln=0,1,2,....

2. Ifthe mgfs ofX andY exist and are equal, i.eMx (t) = My (¢) forall ¢ in
some neighborhood of zero, thék (u) = Fy (u) for all w. O
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Theorem 1.9.Suppose thatX;, X,, ...} isasequence of random variables, each
with mgfMy, (¢). Furthermore, suppose that

lim My, (t) = Mx(t), foralltina neighborhood of zero

and Mx (t) is an mgf. Then, there is a unique ddf whose moments are deter-
mined byMx (t) and, for allx whereF'x (x) is continuous, we have

lim Fy,(z) = Fx(x).

1—00
]

This theorem means that the convergence of mgfs impliesscgance of cdfs.

Examplel.15 We know that the Binomial distribution can be approximatgab
Poisson distribution whepis small andn is large. Using the above theorem we
can confirm this fact.

The mgf of X,, ~ Bin(n, p) and ofY" ~ Poisson(\) are, respectively:
My, (t) = [pe' + (1=p)]",  My(t) = XY,
We will show that the mgf ofX tends to the mgf ot’, whereA = np.

We will need the following useful result given in the lemma:

Lemmal.l Letay,as,... be a sequence of numbers converging:tdhat is,
lim,, .o a, = a. Then

: ap\"

lim <1 + —) = e’

n— oo n

Now, we can write
My, (t) = (pe' + (1 —p))

= (1 + %np(et - 1))n

(b Ny

N eA(et_l) _ My(t).

n—oo

Hence, by Theorem 1.9 the Binomial distribution converges Poisson distribu-
tion.
O
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1.8 Functions of Random Variables

If X is arandom variable with cdfx (z), then any function o, sayg(X) =Y
is also a random variable. The question then is “what is th&idution ofY?”

The functiony = ¢(z) is a mapping from the induced sample space of the random
variableX, X, to a new sample spac¥®, of the random variabl&, that is

g(z): X = .
The inverse mapping ! acts from)’ to X and we can write
g A ={z e X g(x) € A} whered C ).

Then, we have
P(YeA)=P(g(X)e A

({x eX g(x)€ A})

(X € g7'(4)).

The following theorem relates the cumulative distributienctions of X andY =
9(X).

Theorem 1.10.Let X have cdff'x(z), Y = ¢g(X) and let domain and codomain
of g(X), respectively, be

P
P

X ={zx: fx(x) >0}, and Y ={y:y=g(x) for some x € X'}.
(a) If g is an increasing function o/’ thenFy (y) = Fx (¢~ '(y)) fory € Y.
(b) If g is a decreasing function ot thenFy (y) =1 — Fx (g '(y)) fory € Y.

Proof. The cdf ofY = ¢(X) can be written as

Fy(y) = P(Y <y)
(9(X) <y)

({z € X1 g(z) <y})
/ fx(x)dx.
{zeXg(@)<y}

P
P

(a) If g is increasing, then

{reX: glx)<yl={reX:g ' (g)<g'(y}={reXx a2<g'(y}
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So, we can write

B = | fx(@)de
{zeX:g(z)<y}

= / fx(z)dx
{zeX:z<g=(y)}
97 ()
= / fx(z)dz

— 00

= Fx (g_l(y))-
(b) Now, if g is decreasing, then

{reX: gl@)<yl={reX:g'(9)>g'W}={reX z>g"(y)}

So, we can write

Fy(y) = / fx(2)dz
{reX:g(z)<y}

= / fx(z)dx
{reX:z>g1(y)}
= / fx(z)dz

“y)
=1-Fx(9'(y)).

0
Examplel.16 Find the distribution ofY’ = ¢(X) = —log X, where X ~
U([0,1]). The cdf of X is
0, for x <0;
Fx(z)=4 z, for 0 <z <1,
1, for =z > 1.
Forz € [0,1] the functiong(z) = —logz is defined onY = (0,00) and it is

decreasing.
Fory > 0,y = —logx implies thatr = ¢, i.e.,g ! (y) = e¥ and

Fy(y)=1—Fx(g'(y)) =1—Fx(e¥)=1—¢e".

Hence we may write
Fy<y) = (1 — 67?”)[(0700).
This is exponential distribution function for= 1. 0
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For continuous rvs we have the following result.

Theorem 1.11.Let X have pdffx(z) and letY = g(X), whereg is a monotone
function. Suppose thaty(x) is continuous on its suppo®® = {z : fx(x) >
0} and thatg~'(y) has a continuous derivative on supp/t = {y : y =
g(x) for some x € X}. Then the pdf oF is given by

fr(y) = fx (g‘l(y))ld%g‘l(y)lly

Proof.
d
Sy 2
fr(y) dy v(y)

_ %{Fx (97" (W)}, if ¢ is increasing;

- @{1 — Fx(97'(y))}. if gis decreasing.

_ [ Ix(e7'®) g9 M), if gisincreasing;

L —fx(97'(Y) 49 (v), if gis decreasing.
which gives the thesis of the theorem. O

Examplel.17. Suppose that ~ A(0,1). What is the distribution o¥” = Z2?

ForY > 0, the cdf ofY = Z2is

Fy(y) = P(Y <y)
=P(Z* <y)
=P(=\y<Z2<y)
= Fz(Vy) = Fz(=Vy)

fr(y) = d%FY(y)
— 2 (FelD) - Fol—VD)
1 1
mfz(\/y) + mfz(—\/@
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This gives,
1 1 2 1 2
S PN V7 b/ N VT R
= e + e
fy () INCANGT: o
1 1
= V2 0<y< oo
VY2 Y

This is a well known pdf function, which we will use in staicstl inference. Itis
calledchi squared random variable with one degree of freedom it is denoted

by x7.

Note thatg(Z) = Z? is not a monotone function, but the rangeff(—oo, 0o),
can be partitioned so that it is monotone on its sub-sets. 0

Exercisel.11l The pdf obtained in Example 1.17 is also pdf of a Gamma rv for
some specific values of its parameters. What are these Palues

Exercisel.12 Suppose thaZ ~ N(0, 1). Find the distribution o™ = 1 + 07
for constanfu ando.

Exercisel.13 Let X be a random variable with moment generating funcfiog.

(i) Show that the moment generating functionot= a + bX, wherea andb are
constants, is given by
My(t) = €mMX (tb)

(i) Derive the moment generating function Bf ~ A (i, 02). Hint: First find
My (t) for a standard normal rg .



