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1.7.1 Moments and Moment Generating Functions

Definition 1.12. Thenth moment (n ∈ N) of a random variableX is defined as

µ′
n = E Xn

Thenth central moment ofX is defined as

µn = E(X − µ)n,

whereµ = µ′
1 = E X.

�

Note, that the second central moment is the variance of a random variableX, usu-
ally denoted byσ2.

Moments give an indication of the shape of the distribution of a random variable.
Skewness and kurtosis are measured by the following functions of the third and
fourth central moment respectively:

the coefficient of skewnessis given by

γ1 =
E(X − µ)3

σ3
=

µ3

µ
3

2

2

;

the coefficient of kurtosis is given by

γ2 =
E(X − µ)4

σ4
− 3 =

µ4

µ2
2

− 3.

Moments can be calculated from the definition or by using so called moment gen-
erating function.

Definition 1.13. Themoment generating function (mgf) of a random variableX
is a functionMX : R → [0,∞) given by

MX(t) = E etX ,

provided that the expectation exists fort in some neighborhood of zero.
�

More explicitly, the mgf ofX can be written as

MX(t) =

∫ ∞

−∞
etxfX(x)dx, if X is continuous,

MX(t) =
∑

x∈X
etxP (X = x)dx, if X is discrete.

The method to generate moments is given in the following theorem.
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Theorem 1.7. If X has mgfMX(t), then

E(Xn) = M
(n)
X (0),

where

M
(n)
X (0) =

dn

dtn
MX(t)|0.

That is, then-th moment is equal to then-th derivative of the mgf evaluated at
t = 0.

Proof. Assuming that we can differentiate under the integral sign we may write

d

dt
MX(t) =

d

dt

∫ ∞

−∞
etxfX(x)dx

=

∫ ∞

−∞

(

d

dt
etx

)

fX(x)dx

=

∫ ∞

−∞

(

xetx
)

fX(x)dx

= E(XetX).

Hence, evaluating the last expression at zero we obtain

d

dt
MX(t)|0 = E(XetX)|0 = E(X).

Forn = 2 we will get

d2

dt2
MX(t)|0 = E(X2etX)|0 = E(X2).

Analogously, it can be shown that for anyn ∈ N we can write

dn

dtn
MX(t)|0 = E(XnetX)|0 = E(Xn).

�

Example1.14. Find the mgf ofX ∼ Exp(λ) and use results of Theorem 1.7 to
obtain the mean and variance ofX.

By definition the mgf can be written as

MX(t) = E(etX) =

∫ ∞

−∞
etxfX(x)dx.
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For the exponential distribution we have

fX(x) = λe−λxI(0,∞)(x),

whereλ ∈ R+. Here we used the notation of the indicator functionIX (x) whose
meaning is as follows:

IX (x) =

{

1, if x ∈ X ;
0, otherwise.

That is,

fX(x) =

{

λe−λx, if x ∈ (0,∞);
0, otherwise.

Hence, integrating by the method of substitution, we get

MX(t) =

∫ ∞

0

etxλe−λxdx = λ

∫ ∞

0

e(t−λ)xdx =
λ

t − λ
provided that|t| < λ.

Now, using Theorem 1.7 we obtain the first and the second moments, respectively:

E(X) = M ′
X(0) =

λ

(λ − t)2

∣

∣

t=0
=

1

λ
,

E(X2) = M
(2)
X (0) =

2λ

(λ − t)3

∣

∣

t=0
=

2

λ2
.

Hence, the variance ofX is

var(X) = E(X2) − [E(X)]2 =
2

λ2
− 1

λ2
=

1

λ2
.

�

Exercise1.10. Calculate mgf for Binomial and Poisson distributions.

Moment generating functions provide methods for comparingdistributions or
finding their limiting forms. The following two theorems give us the tools.

Theorem 1.8.LetFX(x) andFY (y) be two cdfs whose all moments exist. Then

1. If FX and FY have bounded support, thenFX(u) = FY (u) for all u iff
E(Xn) = E(Y n) for all n = 0, 1, 2, . . ..

2. If the mgfs ofX andY exist and are equal, i.e.,MX(t) = MY (t) for all t in
some neighborhood of zero, thenFX(u) = FY (u) for all u.

�
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Theorem 1.9.Suppose that{X1, X2, . . .} is a sequence of random variables, each
with mgfMXi

(t). Furthermore, suppose that

lim
i→∞

MXi
(t) = MX(t), for all t in a neighborhood of zero,

andMX(t) is an mgf. Then, there is a unique cdfFX whose moments are deter-
mined byMX(t) and, for allx whereFX(x) is continuous, we have

lim
i→∞

FXi
(x) = FX(x).

�

This theorem means that the convergence of mgfs implies convergence of cdfs.

Example1.15. We know that the Binomial distribution can be approximated by a
Poisson distribution whenp is small andn is large. Using the above theorem we
can confirm this fact.

The mgf ofXn ∼ Bin(n, p) and ofY ∼ Poisson(λ) are, respectively:

MXn
(t) = [pet + (1 − p)]n, MY (t) = eλ(et−1).

We will show that the mgf ofX tends to the mgf ofY , whereλ = np.

We will need the following useful result given in the lemma:

Lemma1.1. Let a1, a2, . . . be a sequence of numbers converging toa, that is,
limn→∞ an = a. Then

lim
n→∞

(

1 +
an

n

)n

= ea.

Now, we can write
MXn

(t) =
(

pet + (1 − p)
)n

=

(

1 +
1

n
np(et − 1)

)n

=

(

1 +
λ(et − 1)

n

)n

−→
n→∞

eλ(et−1) = MY (t).

Hence, by Theorem 1.9 the Binomial distribution converges to a Poisson distribu-
tion.

�
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1.8 Functions of Random Variables

If X is a random variable with cdfFX(x), then any function ofX, sayg(X) = Y

is also a random variable. The question then is “what is the distribution ofY ?”

The functiony = g(x) is a mapping from the induced sample space of the random
variableX, X , to a new sample space,Y , of the random variableY , that is

g(x) : X → Y .

The inverse mappingg−1 acts fromY toX and we can write

g−1(A) = {x ∈ X : g(x) ∈ A} whereA ⊂ Y .

Then, we have
P (Y ∈ A) = P (g(X) ∈ A)

= P
(

{x ∈ X : g(x) ∈ A}
)

= P
(

X ∈ g−1(A)
)

.

The following theorem relates the cumulative distributionfunctions ofX andY =
g(X).

Theorem 1.10.LetX have cdfFX(x), Y = g(X) and let domain and codomain
of g(X), respectively, be

X = {x : fX(x) > 0}, and Y = {y : y = g(x) for some x ∈ X}.

(a) If g is an increasing function onX thenFY (y) = FX

(

g−1(y)
)

for y ∈ Y .

(b) If g is a decreasing function onX , thenFY (y) = 1− FX

(

g−1(y)
)

for y ∈ Y .

Proof. The cdf ofY = g(X) can be written as

FY (y) = P (Y ≤ y)

= P (g(X) ≤ y)

= P
(

{x ∈ X : g(x) ≤ y}
)

=

∫

{x∈X :g(x)≤y}
fX(x)dx.

(a) If g is increasing, then

{x ∈ X : g(x) ≤ y} = {x ∈ X : g−1
(

g(x)
)

≤ g−1(y)} = {x ∈ X : x ≤ g−1(y)}.
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So, we can write

FY (y) =

∫

{x∈X :g(x)≤y}
fX(x)dx

=

∫

{x∈X :x≤g−1(y)}
fX(x)dx

=

∫ g−1(y)

−∞
fX(x)dx

= FX

(

g−1(y)
)

.

(b) Now, if g is decreasing, then

{x ∈ X : g(x) ≤ y} = {x ∈ X : g−1
(

g(x)
)

≥ g−1(y)} = {x ∈ X : x ≥ g−1(y)}.

So, we can write

FY (y) =

∫

{x∈X :g(x)≤y}
fX(x)dx

=

∫

{x∈X :x≥g−1(y)}
fX(x)dx

=

∫ ∞

g−1(y)

fX(x)dx

= 1 − FX

(

g−1(y)
)

.

�

Example1.16. Find the distribution ofY = g(X) = − log X, whereX ∼
U([0, 1]). The cdf ofX is

FX(x) =







0, for x < 0;
x, for 0 ≤ x ≤ 1;
1, for x > 1.

For x ∈ [0, 1] the functiong(x) = − log x is defined onY = (0,∞) and it is
decreasing.

Fory > 0, y = − log x implies thatx = e−y, i.e.,g−1(y) = e−y and

FY (y) = 1 − FX

(

g−1(y)
)

= 1 − FX

(

e−y
)

= 1 − e−y.

Hence we may write
FY (y) =

(

1 − e−y
)

I(0,∞).

This is exponential distribution function forλ = 1.
�
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For continuous rvs we have the following result.

Theorem 1.11.LetX have pdffX(x) and letY = g(X), whereg is a monotone
function. Suppose thatfX(x) is continuous on its supportX = {x : fX(x) >

0} and that g−1(y) has a continuous derivative on supportY = {y : y =
g(x) for some x ∈ X}. Then the pdf ofY is given by

fY (y) = fX

(

g−1(y)
)

| d

dy
g−1(y)|IY.

Proof.

fY (y) =
d

dy
FY (y)

=

{ d
dy

{

FX

(

g−1(y)
)}

, if g is increasing;
d
dy

{

1 − FX

(

g−1(y)
)}

, if g is decreasing.

=

{

fX

(

g−1(y)
)

d
dy

g−1(y), if g is increasing;
−fX

(

g−1(y)
)

d
dy

g−1(y), if g is decreasing.

which gives the thesis of the theorem.
�

Example1.17. Suppose thatZ ∼ N (0, 1). What is the distribution ofY = Z2?

ForY > 0, the cdf ofY = Z2 is

FY (y) = P (Y ≤ y)

= P (Z2 ≤ y)

= P (−√
y ≤ Z ≤ √

y)

= FZ(
√

y) − FZ(−√
y).

The pdf can now be obtained by differentiation:

fY (y) =
d

dy
FY (y)

=
d

dy

(

FZ(
√

y) − FZ(−√
y)

)

=
1

2
√

y
fZ(

√
y) +

1

2
√

y
fZ(−√

y)

Now, for the standard normal distribution we have

fZ(z) =
1√
2π

e−z2/2, ∞ < z < ∞.
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This gives,

fY (y) =
1

2
√

y

[

1√
2π

e(−√
y)2/2 +

1√
2π

e(
√

y)2/2

]

=
1√
y

1√
2π

e−y/2, 0 < y < ∞.

This is a well known pdf function, which we will use in statistical inference. It is
calledchi squared random variable with one degree of freedomand it is denoted
by χ2

1.

Note thatg(Z) = Z2 is not a monotone function, but the range ofZ, (−∞,∞),
can be partitioned so that it is monotone on its sub-sets.

�

Exercise1.11. The pdf obtained in Example 1.17 is also pdf of a Gamma rv for
some specific values of its parameters. What are these values?

Exercise1.12. Suppose thatZ ∼ N (0, 1). Find the distribution ofY = µ + σZ

for constantµ andσ.

Exercise1.13. Let X be a random variable with moment generating functionMX .

(i) Show that the moment generating function ofY = a + bX, wherea andb are
constants, is given by

MY (t) = etaMX(tb).

(ii) Derive the moment generating function ofY ∼ N (µ, σ2). Hint: First find
MZ(t) for a standard normal rvZ.


